Как из дроби с целым числом сделать обычную

  • автор:

Перевод дробей

Просто заполните необходимые поля и получите ответ и подробное решение.

Теория

Как перевести обыкновенную дробь в десятичную

Чтобы перевести обыкновенную дробь в десятичную дробь нужно числитель разделить на знаменатель и к полученному числу прибавить целую часть (если она есть).

Формула
Пример

Для примера преобразуем следующую дробь:

5 1 2 = 5 + 1 : 2 = 5 + 0.5 = 5.5

Как перевести десятичную дробь в обыкновенную

Чтобы перевести десятичную дробь в обыкновенную дробь необходимо все цифры после запятой поместить в числитель, а знаменатель будет состоять из единицы и такого количества нулей, сколько цифр в числителе. При этом целая часть числа остаётся неизменной, а полученную дробь нужно сократить, если это возможно.

Примеры

Для примера переведём 5.5 в обыкновенную дробь, а точнее в смешанное число:

Смешанные числа, перевод смешанного числа в неправильную дробь и обратно

В этом материале мы разберем такое понятие, как смешанные числа. Начнем, как всегда, с определения и небольших примеров, потом поясним связь смешанных чисел и неправильных дробей. После этого мы изучим, как правильно выделять целую часть из дроби и получать в результате целое число.

Понятие смешанного числа

Если мы возьмем сумму n + a b , где значением n может быть любое натуральное число, а a b представляет из себя правильную обыкновенную дробь, то мы можем записать то же самое, не используя плюс: n a b . Возьмем конкретные числа для ясности: так, 28 + 5 7 – это то же самое, что и 28 5 7 . Запись дроби рядом с целым числом принято называть смешанным числом.

Смешанное число представляет собой такое число, которое равно сумме натурального числа n с правильной обыкновенной дробью a b . В таком случае n является целой частью числа, а a b – его дробной частью.

Из определения следует, что любое смешанное число равно тому, что получится в результате сложения его целой и дробной части. Таким образом, будет выполняться равенство n a b = n + a b .

Его также можно записать в виде n + a b = n a b .

Какие можно привести примеры смешанных чисел? Так, к ним относится 5 1 8 , при этом пятерка – это его целая часть, а одна восьмая – дробная. Еще примеры: 1 1 2 , 234 34 53 , 34000 6 25 .

Выше мы писали, что в дробной части смешанного числа должна стоять только правильная дробь. Иногда можно встретить записи вида 5 22 3 , 75 7 2 . Они не являются смешанными числами, т.к. их дробная часть неправильная. Их нужно понимать как сумму целой и дробной части. Такие числа можно привести к стандартному виду записи смешанных чисел, выделив целую часть из неправильной дроби и добавив ее к 5 и 75 в этих примерах соответственно.

Числа вида 0 3 14 также не относятся к смешанным. Здесь не выполняется первая часть условия: целая часть должна быть представлена только натуральным числом, а нуль им не является.

Как соотносятся между собой неправильные дроби и смешанные числа

Эту связь проще всего проследить на конкретном примере.

Возьмем целый торт и еще три четверти такого же. Согласно правилам сложения, у нас на столе находится 1 + 3 4 торта. Эту сумму можно представить в виде смешанного числа как 1 3 4 торта. Если мы возьмем целый торт и тоже разрежем его на четыре равные части, то у нас на столе будет 7 4 торта. Очевидно, что от разрезания количество не увеличилось, и 1 3 4 = 7 4 .

Наш пример доказывает, что в виде смешанного числа можно представить любую неправильную дробь.

Вернемся к нашим 7 4 торта, оставшимся на столе. Сложим из его кусочков один торт обратно ( 1 + 3 4 ) . У нас опять будет 1 3 4 .

Ответ: 7 4 = 1 3 4 .

Мы поняли, как приводить неправильную дробь к виду смешанного числа. Если в числителе неправильной дроби стоит такое число, которое можно разделить на знаменатель без остатка, то можно сделать это, и тогда наша неправильная дробь станет натуральным числом.

8 4 = 2 , так как 8 : 4 = 2 .

Как перевести смешанное число в неправильную дробь

Чтобы успешно решать задачи, полезно уметь производить и обратное действие, то есть делать из смешанных чисел неправильные дроби. В этом пункте мы разберем, как правильно это сделать.

Для этого нужно воспроизвести следующую последовательность действий:

1. Для начала представляем имеющееся смешанное число n a b как сумму целой и дробной части. Получается n + a b

2. Далее заменяем целую часть на дробь со знаменателем, равным единице (то есть записываем n как n 1 ).

3.После этого выполняем уже знакомое действие – складываем две обыкновенные дроби n 1 и a b . Получившаяся в результате неправильная дробь и будет равной смешанному числу, данному в условии.

Разберем это действие на конкретном примере.

Представьте 5 3 7 в виде неправильной дроби.

Решение

Выполняем последовательно шаги указанного выше алгоритма. Наше число 5 3 7 – это сумма целой и дробной части, то есть 5 + 3 7 . Теперь пятерку запишем в виде 5 1 . У нас получилась сумма 5 1 + 3 7 .

Последний шаг – сложение дробей, имеющих разные знаменатели:

5 1 + 3 7 = 35 7 + 3 7 = 38 7

Все решение к краткой форме можно записать как 5 3 7 = 5 + 3 7 = 5 1 + 3 7 = 35 7 + 3 7 = 38 7 .

Ответ: 5 3 7 = 38 7 .

Таким образом, с помощью указанной выше цепочки действий мы можем перевести любое смешанное число n a b в неправильную дробь. У нас получилась формула n a b = n · b + a b , которую мы и будем брать для решения дальнейших задач.

Представьте 15 2 5 в виде неправильной дроби.

Решение

Возьмем указанную формулу и подставим в нее нужные значения. У нас n = 15 , a = 2 , b = 5 , следовательно, 15 2 5 = 15 · 5 + 2 5 = 77 5 .

Ответ: 15 2 5 = 77 5 .

Как выделить из неправильной дроби целую часть

Обычно мы не указываем неправильную дробь в качестве итогового ответа. Принято доводить вычисления до конца и заменять ее либо натуральным числом (разделив числитель на знаменатель), либо смешанным числом. Как правило, первый способ используется, когда разделить числитель на знаменатель можно без остатка, а второй – если такое действие невозможно.

Когда мы выделяем из неправильной дроби целую часть, мы просто заменяем ее равным смешанным числом.

Разберем, как именно это делается.

Любая неправильная дробь a b –это смешанное число q r b . Здесь q представляет собой неполное частное, а r – это остаток от a b . Таким образом, целая часть смешанного числа есть неполное частное от деления a b , а дробная – это остаток.

Приведем доказательство этого утверждения.

Нам требуется пояснить, почему q r b = a b . Для этого смешанное число q r b надо представить в виде неправильной дроби, выполнив все шаги алгоритма из предыдущего пункта. Поскольку – неполное частное, а r – остаток от деления a на b , то должно выполняться равенство a = b · q + r .

Таким образом, q · b + r b = a b поэтому q r b = a b . Это и есть доказательство нашего утверждения. Подытожим:

Выделение целой части из неправильной дроби a b осуществляется таким образом:

1) производим деление a на b с остатком и записываем неполное частное q и остаток r отдельно.

2) Записываем результаты в виде q r b . Это и есть наше смешанное число, равное исходной неправильной дроби.

Представьте 107 4 в виде смешанного числа.

Решение

Делим 104 на 7 столбиком:

Как выделить из неправильной дроби целую часть

Деление числителя a = 118 на знаменатель b = 7 дает нам в итоге неполное частное q = 16 и остаток r = 6 .

В итоге мы получаем, что неправильная дробь 118 7 равна смешанному числу q r b = 16 6 7 .

Ответ: 118 7 = 16 6 7 .

Нам осталось посмотреть, как заменить неправильную дробь натуральным числом (при условии, что ее числитель делится на знаменатель без остатка).

Для этого вспомним, какая связь существует между обыкновенными дробями и делением. Из этого можно вывести равенства: a b = a : b = c . Получается, что неправильную дробь a b можно заменить натуральным числом c .

Например, если в ответе получилась неправильная дробь 27 3 , то можем записать вместо нее 9 , поскольку 27 3 = 27 : 3 = 9 .

Математика

Десятичные числа, такие как 0,2; 1,05; 3,017 и т.п. как слышатся, так и пишутся. Ноль целых две десятых, получаем дробь . Одна целая пять сотых, получаем дробь . Три целых семнадцать тысячных, получаем дробь . Цифры до запятой в десятичном числе — это целая часть дроби. Цифра после запятой — числитель будущей дроби. Если после запятой однозначное число — в знаменателе будет 10, если двухзначное — 100, трехзначное — 1000 и т.д. Некоторые полученные дроби можно сократить. В наших примерах

Преобразование дроби в десятичное число

Это обратное предыдущему преобразованию. Десятичная дробь чем характерна? У неё в знаменателе всегда стоит 10, или 100, или 1000, или 10000 и так далее. Если ваша обычная дробь имеет такой знаменатель, проблем нет. Например, или

Если дробь, например . В этом случае необходимо воспользоваться основным свойством дроби и преобразовать знаменатель до 10 или 100, или 1000 . В нашем примере, если домножить числитель и знаменатель на 4, получим дробь , которую возможно записать в виде десятичного числа 0,12.

Некоторые дроби проще разделить, чем преобразовать знаменатель. Например,

Некоторые дроби невозможно преобразовать в десятичные числа!
Например,

Преобразование смешанной дроби в неправильную

Смешанную дробь, например , легко преобразовать в неправильную. Для этого необходимо целую часть умножить на знаменатель (низ) и сложить с числителем (верх), знаменатель (низ) оставить без изменения. То есть

При преобразовании смешанной дроби в неправильную, можно вспомнить, что Можно использовать сложение дробей

Преобразование неправильной дроби в смешанную (выделение целой части)

Неправильную дробь можно перевести в смешанную, выделив целую часть. Рассмотрим пример, . Определяем, сколько целых раз «3» вмещается в «23». Или 23 делим на 3 на калькуляторе, целое число до запятой — искомое. Это «7». Далее определяем числитель уже будущей дроби: полученную «7» умножаем на знаменатель «3» и из числителя «23» вычитаем полученное. Как бы находим то лишнее, что остается от числителя «23», если изъять максимальное количество «3». Знаменатель оставляем без изменения. Все сделано, записываем результат

Преобразование периодической дроби в обыкновенную

Из числа, стоящего до второго периода, вычесть число, стоящее до первого периода, и сделать эту разность числителем; в знаменателе написать цифру 9 столько раз, сколько цифр в периоде, и после девяток дописать столько нулей, сколько цифр между запятой и первым периодом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *